ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине ЕН.01 ЭЛЕМЕНТЫ ВЫСШЕЙ МАТЕМАТИКИ

по специальности 09.02.06 Сетевое и системное администрирование

Форма проведения Д**ифференцированный заче**т

СОГЛАСОВАНО заведующий учебнометодическим отделом Н. А. Ивашкина 31 августа 2022 года

Фонды оценочных средств по специальности 09.02.06 Сетевое и системное администрирование разработаны на основе:

- приказа Министерства образования и науки РФ от 9 декабря 2016 г. N 1548 "Об утверждении федерального государственного образовательного стандарта среднего профессионального образования по специальности 09.02.06 Сетевое и системное администрирование (с изменениями и дополнениями от 17.12.2020 года), зарегистрировано в Минюсте РФ 26 декабря 2016 г. регистрационный N 44978, укрупненная группа специальностей 09.00.00 Информатика и вычислительная техника;
- примерной основной образовательной программы по специальности 09.02.06 Сетевое и системное администрирование, зарегистрировано в государственном реестре примерных основных образовательных программ, приказ ФГБОУ ДПО ИРПО № П-24 от 02.02.2022.

Организация-разработчик: государственное бюджетное учреждение Калининградской области профессиональной образовательной организации «Технологический колледж»

Разработчик:

Вакулина З.А. преподаватель

Рассмотрены на заседании методической кафедре Математических, естественноналиных дисциплин и информационных технологий, протокол № 01 от 30 августа 2022 года

Рекомендован Методическим советом государственного бюджетного учреждения Калининградской области профессиональной образовательной организацией «Технологический колледж», протокол № 01 от 31 августа 2022 года.

1. Паспорт фонда оценочных средств

В результате освоения учебной дисциплины ЕН.01 Элементы высшей математики обучающийся должен обладать предусмотренными ФГОС по специальности 09.02.06 Сетевое и системное администрирование, укрупненная группа направления 09.00.00 Информатика и вычислительная техника результатами обучения.

Результаты обучения	Критерии оценки	Методы оценки
Перечень знаний, осваиваемых в рамках дисциплины: Основы математического анализа, линейной алгебры и аналитической геометрии. Основы дифференциального и интегрального исчисления. Основы теории комплексных чисел.	«Отлично» - теоретическое содержание курса освоено полностью, без пробелов, умения сформированы, все предусмотренные программой учебные задания выполнены, качество их выполнения оценено высоко. «Хорошо» - теоретическое содержание курса освоено полностью, без пробелов, некоторые умения сформированы недостаточно, все предусмотренные программой учебные задания выполнены, некоторые виды заданий выполнены с ошибками. «Удовлетворительно» - теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые умения работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий содержат ошибки. «Неудовлетворительно» - теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные	устный опрос, тестирование, выполнение индивидуальных заданий различной сложности оценка ответов в ходе эвристической беседы, тестирование оценка ответов в ходе
Перечень умений, осваиваемых в рамках дисциплины: Выполнять операции над матрицами и решать системы линейных уравнений. Определять предел последовательности, предел функции. Применять методы дифференциального и интегрального исчисления. Использовать методы дифференцирования и интегрирования для решения практических задач. Решать дифференциальные уравнения. Пользоваться понятиями		эвристической беседы, подготовка презентаций устный опрос, тестирование, демонстрация умения выполнять операции над матрицами и решать системы линейных уравнений в
		устный опрос, тестирование, демонстрация умения решать задачи, используя уравнения прямых и кривых второго порядка на плоскости устный опрос, тестирование, демонстрация умения применять методы
теории комплексных чисел.	учебные задания содержат грубые ошибки.	дифференциального и интегрального исчисления при решении задач устный опрос, тестирование, демонстрация умения

решать
дифференциальные
уравнения
устный опрос,
тестирование,
демонстрация умения
пользоваться понятиями
теории комплексных
чисел при выполнении
индивидуальных заданий

ТЕСТ Задание № 1.

Установите соответствие между номером уравнения и его типом

1)
$$y' - \frac{3y}{x} = e^x y^2$$
 2) $(xy^2 + 2y^2)dx + x^2(1-y)dy = 0$

3)
$$(ye^x + e^y)dx + (xe^y + e^x)dy = 0$$
 4) $y' = \frac{x - y}{x + y - 1}$.

____ уравнение с разделяющимися переменными,

- однородное дифференциальное уравнение,
- уравнение Бернуллиуравнение, приводящееся к однородному

Задание № 2.

Дано уравнение первого порядка $x dy - y \ln \frac{y}{x} dx = 0$ в форме, содержащей дифференциалы. Приведите его к виду, разрешенному относительно производной.

Ответ

Задание № 3.

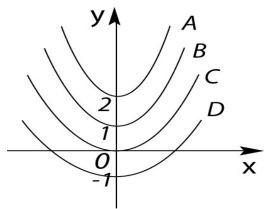
Дано дифференциальное уравнение $y' = (k+1)x^2$, тогда функция $y = x^3$ является его решением при k, равном:

Ответ

Задание № 4.

Общий интеграл дифференциального уравнения $\frac{dy}{y^2} = xdx$ имеет вид

ВАРИАНТЫ ОТВЕТОВ:


1)
$$-\frac{1}{y} = \frac{x^2}{2} + C$$
 2) $-\frac{1}{y} = x^2 + C$ 3) $y = \frac{x^2}{2} + C$ 4) $\frac{1}{y} = \frac{x^2}{2} + C$.

3a garding No 5.

Укажите интегральную кривую решения задачи Коши для обыкновенного дифференциального уравнения xy' = 2y; y(1) = 1.

ВАРИАНТЫ ОТВЕТОВ:

1) D 2) C 3) A 4) B

Вариант № 1

Решить уравнения:

1.
$$4xdx - 3ydy = 3x^2ydy - 2xy^2dx$$
,

2.
$$xy' = (3y^3 + 2yx^2)/(2y^2 + x^2)$$
,

3.
$$y' = (3y - x - 4)/(3x + 3)$$
,

4.
$$(3x^2y + 2y + 3)dx + (x^3 + 2x + 3y^2)dy = 0$$
.

Решить задачи Коши для уравнений:

5.
$$y' + y t g x = \cos^2 x$$
, $y\left(\frac{\pi}{4}\right) = \frac{1}{2}$,

6.
$$xy' - y = -y^2 (\ln x + 2) \ln x$$
, $y(1) = 1$.

Вариант № 2

Решить уравнения:

1.
$$6xdx - ydy = yx^2dy - 3xy^2dx,$$

2.
$$xy' = (3y^3 + 10yx^2)/(2y^2 + 5x^2)$$
,

3.
$$y' = (5y+5)/(4x+3y-1)$$
,

4.
$$(5xy^2 - x^3)dx + (5x^2y - y)dy = 0$$
.

Решить задачи Коши для уравнений:

5.
$$y' + 2xy = -2x^3$$
, $y(1) = \frac{1}{e}$,

6.
$$8xy' - 12y = -(5x^2 + 3)y^3$$
, $y(1) = \sqrt{2}$.

Вариант № 3

Решить уравнения:

1.
$$x\sqrt{3+y^2}dx + y\sqrt{2+x^2}dy = 0$$
,

2.
$$x \frac{dy}{dx} = \frac{3y^3 + 4yx^2}{2y^2 + 2x^2}$$
,

3.
$$\frac{dy}{dx} = \frac{2x + y - 3}{x - 1}$$
,

4.
$$\left(\sin y + y\sin x + \frac{1}{x}\right)dx + \left(x\cos y - \cos x + \frac{1}{y}\right)dy = 0.$$

Решить задачи Коши для уравнений:

5.
$$y' - \frac{y}{x+1} = e^x(x+1),$$
 $y(0) = 1$

6.
$$2(y' + xy) = (1 + x)e^{-x}y^2$$
, $y(0) = 2$.

Вариант №4

Решить уравнения:

1.
$$\sqrt{5+y^2} + y'y\sqrt{1-x^2} = 0$$
,

2.
$$\frac{dy}{dx} = \frac{x^2 + 2xy - y^2}{2x^2 - 2xy}$$
,

3.
$$\frac{dy}{dx} = \frac{4y-8}{3x+2y-7}$$
,

4.
$$\frac{y}{x^2}\cos\left(\frac{y}{x}\right)dx - \left[\frac{1}{x}\cos\left(\frac{y}{x}\right) + 2y\right]dy = 0$$
.

Решить задачи Коши для уравнений:

5.
$$y' - \frac{y}{x} = -2\frac{\ln x}{x}$$
, $y(1) = 1$,

6.
$$3xy' + 5y = (4x - 5)y^4$$
, $y(1) = 1$.

Вариант № 5

Решить уравнения:

1.
$$y'y\sqrt{\frac{1-x^2}{1-y^2}}+1=0$$
,

2.
$$\frac{dy}{dx} = \frac{y^2}{x^2} + 4\frac{y}{x} + 2$$
,

3.
$$\frac{dy}{dx} = \frac{x+y-2}{2x-2}$$
,

4.
$$(y^2 + y \sec^2 x) dx + (2xy + tgx) dy = 0$$
.

Решить задачи Коши для уравнений:

5.
$$y' + y \cos x = \frac{1}{2} \sin 2x$$
, $y(0) = 0$,

6.
$$(y' + 4x^3y) = 4(x^3 + 1)e^{-4x}y^2$$
, $y(0) = 1$.

Вариант № 6

Решить уравнения:

1.
$$x\sqrt{4+y^2}dx + y\sqrt{1+x^2}dy = 0$$
,

2.
$$3\frac{dy}{dx} = \frac{y^2}{x^2} + \frac{8y}{x} + 4$$
,

3.
$$\frac{dy}{dx} = \frac{y - 2x + 3}{x - 1}$$
,

4.
$$e^{y} dx + (\cos y + xe^{y}) dy = 0$$
.

Решить задачи Коши для уравнений:

5.
$$y' - \frac{2xy}{1+x^2} = x^2 + 1$$
, $y(1) = 3$,

6.
$$xy' + y = y^2 \ln x$$
, $y(1) = 1$.

Вариант № 7

Решить уравнения:

1.
$$\sqrt{3+y^2} dx - y dy = x^2 y dy$$
,

2.
$$x \frac{dy}{dx} = 2\sqrt{x^2 + y^2} + y$$
,

3.
$$\frac{dy}{dx} = \frac{x+3y+4}{3x-6}$$
,

4.
$$(x^2 - 4xy - 2y^2) dx + (y^2 - 4xy - 2x^2) dy = 0$$
.

Решить задачи Коши для уравнений:

5.
$$y' - y \frac{2x - 5}{x^2} = 5$$
, $y(2) = 4$,

6.
$$2(y' + xy) = (1+x)e^{-x}y^2$$
, $y(0) = 2$.

Вариант № 8

Решить уравнения:

1.
$$(e^x + 8)dy - ye^x dx = 0$$
,

$$2. \frac{dy}{dx} = \frac{x+2y}{2x-y},$$

3.
$$\frac{dy}{dx} = \frac{2x+3y-5}{5x-5}$$
,

4.
$$\left(\frac{1}{x^2} + 3\frac{y^2}{x^4}\right) dx - \frac{2y}{x^3} dy = 0$$
.

Решить задачи Коши для уравнений:

5.
$$y' + \frac{2xy}{1+x^2} = \frac{2x^2}{1+x^2}$$
, $y(0) = \frac{2}{3}$,

6.
$$2xy' - 3y = -(5x^2 + 3)y^3$$
, $y(1) = \frac{1}{\sqrt{2}}$.

Вариант № 9

Решить уравнения:

1.
$$6x dx - 6y dy = 3x^2 y dy - 2xy^2 dx$$
,

2.
$$x \frac{dy}{dx} = \frac{3y^3 + 6yx^2}{2y^2 + 3x^2}$$
,

3.
$$\frac{dy}{dx} = \frac{x - 2y + 3}{-2x - 2}$$
,

4.
$$\frac{dx}{y} - (x + y^2) \frac{dy}{y^2} = 0$$
.

Решить задачи Коши для уравнений:

5.
$$y' + \frac{y}{x} = e^x \frac{x+1}{x}$$
, $y(1) = e$,

6.
$$2y' + 3y \cos x = e^{2x} (2 + 3\cos x)y^{-1}, \quad y(0) = 1.$$

Вариант № 10

Решить уравнения:

1.
$$x\sqrt{5+y^2}dx + y\sqrt{4+x^2}dy = 0$$
,

2.
$$\frac{dy}{dx} = \frac{x^2 + xy - y^2}{x^2 - 2xy}$$
,

3.
$$\frac{dy}{dx} = \frac{x+8y-9}{10x-y-9}$$
,

4.
$$\frac{ydx}{x^2} - (xy+1)\frac{dy}{x} = 0$$
.

Решить задачи Коши для уравнений:

5.
$$y' + \frac{y}{2x} = x^2$$
, $y(1) = 1$,
6. $3(xy' + y) = xy^2$, $y(1) = 3$.

6.
$$3(xy' + y) = xy^2$$
, $y(1) = 3$

Вариант № 11

Решить уравнения:

1.
$$y(4+e^x)dy - e^x dx = 0$$
,

2.
$$x \frac{dy}{dx} = \sqrt{2x^2 + y^2} + y$$
,

3.
$$\frac{dy}{dx} = \frac{x+2y-3}{4x-y-3}$$
,

$$4. \left(xe^x + \frac{y}{x^2}\right) dx - \frac{dy}{x} = 0.$$

Решить задачи Коши для уравнений:

5.
$$y' - \frac{y}{x} = -\frac{12}{x^3}$$
, $y(1) = 4$,

6.
$$y' - y = 2xy^2$$
, $y(0) = \frac{1}{2}$.

Вариант № 12

Решить уравнения:

1.
$$\sqrt{4-x^2}y' + xy^2 + x = 0$$
,

2.
$$\frac{dy}{dx} = \frac{y^2}{x^2} + \frac{6y}{x} + 6$$
,

3.
$$\frac{dy}{dx} = \frac{3y+3}{2x+y-1}$$
,

4.
$$xy^2 dx + y(x^2 + y^2) dy = 0$$
.

Решить задачи Коши для уравнений:

5.
$$y' + \frac{2y}{x} = x^3$$
, $y(1) = -\frac{5}{6}$,

6.
$$2xy' - 3y = -(20x^2 + 12)y^3$$
, $y(1) = \frac{\sqrt{2}}{2}$.

Вариант № 13

Решить уравнения:

1.
$$2x dx - 2y dy = x^2 y dy - 2xy^2 dx$$
,

2.
$$x \frac{dy}{dx} = \frac{3y^3 + 8yx^2}{2y^2 + 4x^2}$$
,

3.
$$\frac{dy}{dx} = \frac{x+3y-4}{5x-y-4}$$
,

4.
$$xy^2 dx + y(x^2 + y) dy = 0$$
.

Решить задачи Коши для уравнений:

5.
$$y' + \frac{y}{x} = 3x$$
, $y(1) = 1$,

6.
$$y' + 2xy = 2x^3y^3$$
, $y(0) = \sqrt{2}$.

Вариант № 14

Решить уравнения:

1.
$$x\sqrt{1+y^2}dx + y\sqrt{1+x^2}dy = 0$$
,

2.
$$x \frac{dy}{dx} = \frac{3y^3 + 4yx^2}{2y^2 + 2x^2}$$
,

3.
$$\frac{dy}{dx} = \frac{x + 7y - 8}{9x - y - 8}$$
,

4.
$$\frac{1+xy}{x^2y}dx + \frac{1-xy}{xy^2}dy = 0$$
.

Решить задачи Коши для уравнений:

5.
$$y' + \frac{y}{x} = \sin x$$
, $y(\pi) = \frac{1}{\pi}$,
6. $3(xy' + y) = y^2 \ln x$, $y(1) = 3$.

6.
$$3(xy' + y) = y^2 \ln x$$
, $y(1) = 3$.

Вариант № 15

Решить уравнения:

1.
$$(e^{2x} + 5) dy - ye^{2x} dx = 0$$
,

2.
$$x \frac{dy}{dx} = 3\sqrt{x^2 + y^2} + y$$
,

3.
$$\frac{dy}{dx} = \frac{x + 2y - 3}{x - 1}$$
,

4.
$$(y^3 + \cos x) dx + (3xy^2 + e^y) dy = 0$$
.

Решить задачи Коши для уравнений:

5.
$$y' + \frac{1-2x}{x^2}y = 1$$
, $y(1) = 1$,

6.
$$(8+12\cos x)e^{2x} = y(2y'+3y\cos x), \quad y(0) = 2.$$

ПРИЛОЖЕНИЯ

СПРАВОЧНАЯ ИНФОРМАЦИЯ

Основные формулы и правила дифференцирования

y = C $(C = const)$	dy = 0
$y = x^{\mu}$	$dy = \mu x^{\mu - 1} dx$
$y = \frac{1}{x}$	$dy = -\frac{dx}{x^2}$

$y = \sqrt{x}$	$dy = \frac{dx}{2\sqrt{x}}$	
$y = a^x$	$dy = a^x \ln a dx$	
$y = a^{x}$ $y = e^{x}$	$dy = e^x dx$	
$y = \log_a x$	$dy = \frac{\log_a e}{x} dx$ $dy = \frac{dx}{x}$	
$y = \ln x$	$dy = \frac{dx}{x}$	
$y = \sin x$	$dy = \cos x dx$	
$y = \cos x$	$dy = -\sin x dx$	
y = tgx	$dy = \frac{dx}{\cos^2 x}$	
y = ctgx	$dy = -\frac{dx}{\sin^2 x}$	
$y = \arcsin x$	$dy = \frac{dx}{\sqrt{1-x^2}}$	
$y = \arccos x$	$dy = -\frac{dx}{\sqrt{1 - x^2}}$	
y = arctgx	$dy = \frac{dx}{1+x^2}$	
y = arcctgx	$dy = -\frac{dx}{1+x^2}$	
	еренцирования	
$d(cu) = c \cdot du$		
$d(u \pm v) = du \pm dv$		
d(uv) = vdu + udv		
$d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}$		

Таблица основных интегралов

$$1. \int dx = x + c$$

$$11. \int \frac{dx}{\sin x} = \ln \left| tg \frac{x}{2} \right| + c$$

$$2. \int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c, \alpha \neq -1$$

12.
$$\int \frac{dx}{a^2 + x^2} = \begin{cases} \frac{1}{a} \operatorname{arctg} \frac{x}{a} + c \\ -\frac{1}{a} \operatorname{arcctg} \frac{x}{a} + c \end{cases}$$

$$3. \int a^x dx = \frac{a^x}{\ln a} + c$$

13.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + c$$

$$4. \int \frac{dx}{x} = \ln|x| + c$$

14.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + c$$

$$5. \int \cos x dx = \sin x + c$$

15.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \begin{cases} \arcsin \frac{x}{a} + c \\ -\arccos \frac{x}{a} + c \end{cases}$$

$$6. \int \sin x dx = -\cos x + c$$

16.
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + c$$

7.
$$\int \frac{dx}{\cos^2 x} = tgx + c$$

17.
$$\int shxdx = chx + c$$

8.
$$\int \frac{dx}{\sin^2 x} = -ctgx + c$$

$$18. \int chxdx = shx + c$$

9.
$$\int \frac{dx}{\sin x} = \ln \left| tg \frac{x}{2} \right| + c$$

$$19. \int \frac{dx}{ch^2x} = thx + c$$

10.
$$\int \frac{dx}{\cos x} = \ln \left| tg \left(\frac{x}{2} + \frac{\pi}{2} \right) \right| + c$$

$$20. \int \frac{dx}{sh^2x} = -cthx + c$$